Geometry Notes – Chapter 7: Right Triangles

7.1 – The Pythagorean Theorem

The Pythagorean Theorem

In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

Pythagorean Triples – A set of three

integers a, b and c that satisfy the equation $a^2 + b^2 - c^2$

u	$\iota \pm v$	$-\iota$		
Common Pythagorean	Triples	and Some of	Their Multi	ples

3, 4, 5	5, 12, 13	8, 15, 17	7, 24, 25
6, 8, 10	10, 24, 26	16, 30, 34	14, 48, 50
9, 12, 15	15, 36, 39	24, 45, 51	21, 72, 75
30, 40, 50	50, 120, 130	80, 150, 170	70, 240, 250

7.2 – Converse of Pythagorean Theorem

Converse of the Pythagorean Theorem

If the square of the length of the longest side of a triangle is <u>equal to</u> the sum of the squares of the lengths of the other two sides, then the triangles is a right triangle.

If $c^2 = a^2 + b^2$, then $\triangle ABC$ is right.

Theorem 7.3

If the square of the length of the longest side of a triangle is <u>less than</u> the sum of the squares of the lengths of the other two sides, then the triangles is an acute triangle.

If $c^2 < a^2 + b^2$, then $\triangle ABC$ is acute.

Theorem 7.4

If the square of the length of the longest side of a triangle is <u>greater than</u> the sum of the squares of the lengths of the other two sides, then the triangles is an obtuse triangle.

If $c^2 > a^2 + b^2$, then $\triangle ABC$ is obtuse.

Concept Summary

If	Then
$c^2 = a^2 + b^2$	Right Triangle
$c^2 < a^2 + b^2$	Acute Triangle
$c^2 > a^2 + b^2$	Obtuse Triangle

7.3 – Similar Right Triangles

Theorem 7.5

If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other.

So $\triangle CBD \sim \triangle ABC$, $\triangle ACD \sim \triangle ABC$ and $\triangle CBD \sim \triangle ACD$

Geometric Mean Altitude Theorem

In a right triangle, the altitude from the right angle to the hypotenuse divides the hypotenuse into two segments.

The length of the altitude is the geometric mean of the lengths of the two segments.

Geometry Notes – Chapter 7: Right Triangles

Geometric Mean Legs Theorem

In a right triangle, the altitude from the right angle to the hypotenuse divides the hypotenuse into two segments.

The length of each leg of the right triangle is the geometric mean of the lengths of the hypotenuse and the segment of the hypotenuse that is adjacent to the leg.

So,			and,		
	AB	CB		AB	AC
	CB	DB		AC	AD

Concept Summary

Altitude Theorem

$$\frac{\text{Part1}}{\text{Alt}} = \frac{\text{Alt}}{\text{Part2}}$$

Legs Theorem

$$\frac{\text{Part1}}{\text{Leg1}} = \frac{\text{Leg1}}{\text{Hyp}}$$

and

$$\frac{Part2}{Leg2} = \frac{Leg2}{Hyp}$$

7.4 – Special Right Triangles

45°-45°-90° Triangle Theorem

In a 45°-45°-90° triangle, the hypotenuse is $\sqrt{2}$ times as long as each leg.

$leg = \frac{hypotenuse}{\sqrt{2}}$

30°-60°-90° Triangle Theorem

In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg, and the longer is leg is $\sqrt{3}$ times as long as the shorter leg.

hypotenuse = $2 \cdot \text{shorter leg}$

longer leg = shorter leg •
$$\sqrt{3}$$

shorter leg = $\frac{\text{hypotenuse}}{2}$
longer leg

shorter leg =
$$\frac{1011ger}{\sqrt{3}}$$

7.5 – The Tangent Ratio

Tangent Ratio

Let $\triangle ABC$ be a right triangle with acute $\angle A$. The tangent of $\angle A$ (written as tan A) is defined as follows (see diagram below):

7.6 – The Sine and Cosine Ratios

Sine Ratio

Let $\triangle ABC$ be a right triangle with acute $\angle A$. The sine of $\angle A$ (written as sin A) is defined as follows (see diagram below):

Cosine Ratio

Let $\triangle ABC$ be a right triangle with acute $\angle A$. The cosine of $\angle A$ (written as cos A) is defined as follows (see diagram below):

Concept Summary

A commonly used device to help students remember the three trigonometric ratios is *SOH-CAH-TOA*. This stands for

SOH	$\sin = \frac{opposite}{hypotenuse} or \sin = \frac{opp}{hyp}$
САН	$\cos = \frac{adjacent}{hypotenuse} or \cos = \frac{adj}{hyp}$
ТОА	$\tan = \frac{opposite}{adjacent} or \tan = \frac{opp}{adj}$

7.7 – Solving Right Triangles

Solve a Right Triangle – To solve a right triangle means to find the measures of all of its sides and angles. You can solve a right triangle if you know either of the following:

- Two side lengths
- One side length and one acute angle

Inverse Trigonometric Ratios

Let $\angle A$ be an acute angle.

Inverse Tangent If $\tan A = x$, then $\tan^{-1} = m \angle A$ **Notation (diagram)**: $\tan^{-1} \left(\frac{BC}{AC} \right) = m \angle A$

Inverse Sine If $\sin A = x$, then $\sin^{-1} = m \angle A$ Notation (diagram): $\sin^{-1} \binom{BC}{B} = m \angle A$

Notation (diagram): $\sin^{-1}\left(\frac{BC}{AB}\right) = m \angle A$

Inverse Cosine If $\cos A = x$, then $\cos^{-1} = m \angle A$ **Notation (diagram)**: $\cos^{-1} \left(\frac{AC}{AB} \right) = m \angle A$