CP Statistics – Chapter 7 Notes: Sampling Distributions

7.1 – What is a Sampling Distribution?

Parameter – A **parameter** is a number that describes some characteristic of the population *Statistic* – A **statistic** is a number that describes some characteristic of a sample

Symbols used	Sample Statistic	Population Parameter
Proportions	\hat{p}	р
Means	\overline{x}	μ

Sampling Distribution – the distribution of all values taken by a statistic in all possible samples of the same size from the same population

A statistic is called an *unbiased estimator* of a parameter if the mean of its sampling distribution is equal to the parameter being estimated

Important Concepts for unbiased estimators

- The **mean** of a sampling distribution will <u>always</u> equal the mean of the population for any sample size
- The **spread** of a sampling distribution is affected by the sample size, *not the population size*. Specifically, <u>larger sample sizes result in smaller spread or variability</u>.

7.2 – Sample Proportions

Choose an SRS of size n from a large population with population proportion p having some characteristic of interest.

Let \hat{p} be the proportion of the sample having that characteristic. Then the mean and standard deviation of the sampling distribution of \hat{p} are

Mean:
$$\mu_{\hat{p}} = p$$
 Std. Dev.: $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$
With the Z-Statistic: $Z = \frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}$

CONDITIONS FOR NORMALITY

The 10% Condition

Use the formula for the standard deviation of \hat{p} only when the size of the sample is no more than 10% of the population size $(n \le \frac{1}{10}N)$.

The Large Counts Condition

We will use the normal approximation to the sampling distribution of \hat{p} for values of *n* and *p* that satisfy $np \ge 10$ and $n(1-p) \ge 10$.

7.3 – Sample Means

Suppose that \overline{x} is the mean of a sample from a large population with mean μ and standard deviation σ . Then the mean and standard deviation of the sampling distribution of \overline{x} are

Mean:
$$\mu_{\bar{x}} = \mu$$
 Std. Dev.: $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

With the Z-Statistic:
$$z = \frac{\bar{x} - \mu}{\sigma_{/\sqrt{n}}}$$

CONDITIONS FOR NORMALITY

If an SRS is drawn from a population that has the normal distribution with mean μ and standard deviation σ , then the sample mean \overline{x} will have the normal distribution $N(\mu, \sigma/\sqrt{n})$ for any sample size.

Central Limit Theorem

If an SRS is drawn from any population with mean μ and standard deviation σ , when *n* is large $(n \ge 30)$, the sampling distribution of the sample mean \overline{x} will have the normal distribution $N(\mu, \sigma/\sqrt{n})$.