1. Patients receiving artificial knees often experience pain after surgery. The pain is measured on a subjective scale with possible values of 1 to 5 . Assume that X is a random variable representing the pain score for a randomly elected patient. The following table gives part of the probability distribution for X .

X	1	2	3	4	5
$P(X)$.1	.2	.3	.3	

(a) Find $\mathrm{P}(\mathrm{X}=5) .1-(.1+.2+.3+.3)=1-.9=.1$
(b) Find the probability that the pain score is less than $3 . \mathbf{P}(\mathbf{x}<3)=.1+.2=.3$
(c) Find the probability that the pain score is greater than $3 . \mathbf{P}(\mathbf{x}>3)=.3+.1=.4$
(d) Find the mean μ for this distribution. $\mu=\Sigma \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}=\mathbf{1 (. 1)}+2(.2)+3(.3)+4(.3)+5(.1)=3.1$
2. Amarillo Slim, a professional dart player, has an 80% chance of hitting the bull's-eye on a dartboard with any throw. Suppose that he throws 10 darts, one at a time, at the dartboard.
(a) Find the probability that Slim hits the bull's-eye exactly six times. binompdf(10, .8, 6) $=.088$
(b) Find the probability that he hits the bull's-eye at least four times. 1 -binomcdf(10, $\mathbf{8 , 3} \mathbf{3}$) $=.999$
(c) Compute the expected number of bull's-eyes in 10 throws. $\boldsymbol{\mu}=\mathbf{n p}=\mathbf{1 0 (. 8)}=\mathbf{8}$
(d) Find the probability that Slim's first bull's-eye occurs on the fourth throw. geometpdf($(8,4)=.0064$
(e) Find the probability that it takes Amarillo more than 2 throws to hit the bullseye.

$$
P(x>2)=(.2)^{2}=.04 \quad \text { OR } \quad 1 \text {-geometcdf }(.8,2)=.04
$$

3. Harlan comes to class one day, totally unprepared for a pop quiz consisting of ten multiple-choice questions. Each question has five answer choices, and Harlan answers each question randomly.
(a) Find the probability that Harlan's gets more than 5 questions right out of 10.

$$
P(x>5)=1-\operatorname{binomcdf}(10, .2,5)=.0064
$$

(b) Find the probability that Harlan's first correct answer occurs after the fourth question.

$$
P(x>4)=(.8)^{4}=.4096 \quad \text { OR } \quad 1 \text {-geometcdf }(.2,4)=.4096
$$

(c) Find the expected number of questions required for Harlan to get his first correct answer.

$$
\mu=1 / p=1 / .2=5
$$

(d) Find the probability that Harlan guesses more answers correctly than would be expected by chance. Since $\mu=\mathbf{n p}=10(.2)=2: \quad \mathbf{P}(x>2)=(.8)^{2}=.64 \quad$ OR $\quad 1$-geometcdf($\left..2,2\right)=.64$

