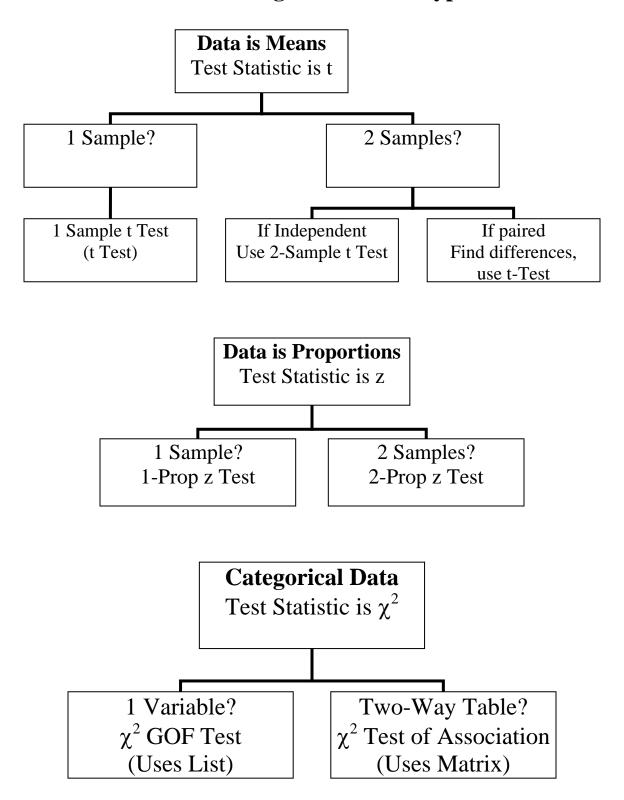
AP Statistics: Choosing the Correct Hypothesis Test



AP Statistics – Hypothesis Test Statistics

Name	Formula	Conditions or Assumptions*
One-sample z-test	$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$	(Normal distribution or $n > 30$) and σ known.
One-sample t-test	$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$	(Normal population or <i>n</i> > 30) and σ unknown df = n-1
Paired t-test	$t = \frac{\overline{d} - d_0}{s_d / \sqrt{n}}$	(Normal population of differences or <i>n</i> > 30) and σ unknown df = n-1
One-proportion z-test	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	n p > 10 and n (1 - p) > 10
Two-proportion z-test	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$	$n_1 p_1 > 5$ AND $n_1(1 - p_1) > 5$ and $n_2 p_2 > 5$ and $n_2(1 - p_2) > 5$ and independent observations
Two-sample t-test	$t = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	(Normal populations or $n_1+n_2 > 30$) and independent observations and σ_1 and σ_2 unknown
Chi-Square Test	$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$	All expected counts > 0 and no more than 20% are 5 or less df = n-1 for Goodness of Fit test df = (r-1)(c-1) for Test of Association

^{*} Note that it is common to all tests that we require the sample to be an SRS

Definition of Symbols Used

n = sample size \overline{x} = sample mean s = sample standard deviation μ_0 = population mean σ = population standard deviation t = t statistic	n_1 = sample 1 size n_2 = sample 2 size s_1 = sample 1 std. deviation s_2 = sample 2 std. deviation \overline{d} = sample mean of differences d_0 = population mean difference	p_1 = proportion 1 p_2 = proportion 2 μ_1 = population 1 mean μ_2 = population 2 mean O = observed count E = expected count
<pre>t = t statistic df = degrees of freedom</pre>	d_0 = population mean difference s_d = std. deviation of differences	E = expected count

AP Statistics - Confidence Interval Formulas

Name	Formula	Conditions or Assumptions
One-sample t interval	$\overline{x} \pm t * \frac{s}{\sqrt{n}}$	(Normal population or <i>n</i> > 30) and σ unknown df = n-1
One-proportion z interval	$\hat{p} \pm z * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$n \cdot \hat{p} > 10 \text{ and } n (1 - \hat{p}) > 10$
Two-sample t interval	$(\overline{x}_1 - \overline{x}_2) \pm t * \sqrt{\frac{{s_1}^2}{n_1} + \frac{{s_2}^2}{n_2}}$	(Normal populations or $n_1+n_2 > 40$) and independent observations and σ_1 and σ_2 unknown
Two-proportion z interval	$(\hat{p}_1 - \hat{p}_2) \pm z * \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$	n_1 $\stackrel{\frown}{p}_1 > 5$ AND $n_1(1 - \stackrel{\frown}{p}_1) > 5$ and n_2 $\stackrel{\frown}{p}_2 > 5$ and $n_2(1 - \stackrel{\frown}{p}_2) > 5$ and independent observations

^{*} Note that it is common to all intervals that we require the sample to be an SRS

Definition of Symbols Used

n = sample size	\overline{x}_1 = sample 1 mean	\hat{p} = sample proportion
\overline{x} = sample mean	\overline{x}_2 = sample 2 mean	\hat{p}_1 = sample proportion 1
s = sample standard deviation	n_1 = sample 1 size	^
σ = population standard deviation	n_2 = sample 2 size	p_2 = sample proportion 2
t^* = t-statistic critical value	s_1 = sample 1 std. deviation	
z^* = z-statistic critical value df = degrees of freedom	s_2 = sample 2 std. deviation	

Commonly used z* values:

C-Level	z* value
80%	1.282
90%	1.645
95%	1.960
98%	2.326
99%	2.576