AP Statistics Semester I Final Exam Review Solutions

Player	Mean	Median	Mode
Jerry	5	5	7
George	5.33	4	3

1. One-variable data analysis

Since George has an outlier on Hole 9, his mean is greatly affected. Using the median would be a better comparison when outliers are present. Other than Hole 9, George did better.

2. Analysis of histograms – center and spread

Era	Center	Spread	
1901-1930	.375	.300430	
1931-1960	.360	.300410	
1961-1990	.340	.300400	

Over time, batting averages are decreasing in their measure of center and the spread is decreasing a little on the high end.

3. Stem and leaf plot, time plot

a)

8 8

Results are rounded to the
nearest tenth of a meter
$6 \mid 4 = 6.4$ meters (rounded)

c) The time plot allows us to see the progression of the long jump winning length over time. It shows a gradual climb with occasional dips. There is one major peak in 1968, when the record was increased by a great amount. The stem plot allows us to see the overall distribution better. We can see that the center is around 7.8 meters. The 6.4 is a bit of an outlier. The other values have a fairly uniform shape from 7.0 to 8.9.

- 4. Histogram of Rose Bowl winning scores
- a)

c) Skewed right. If a "whisker" of a box and whisker plot is stretch longer than the other, there is an outlier in that direction, causing a skew.

Scores

d) If there is an outlier on the high side, it would have to be greater than $Q_3 + 1.5 \cdot IQR$

Here that would be: 29+1.5(29-14) = 51.5. So the highest value (49) is <u>not</u> an outlier.

5. Analysis of normal density curves

- a) C = new, B = 5 years, A = 10 years. Weights will be very similar at beginning, then will vary greatly over time.
- b) Average weight decreases, on average.
- c) The standard deviation increases, becomes more variable.

6. 68-95-99.7 Rule

b) 68% c) 81.5% d) 47.5%

e) z = (310 - 266) / 16 = 2.75. From Table A, the answer is .003 or .3%

7. Linear Regression Analysis

- a) y = 50.49 5.74x, r = -.469, $r^2 = .22$ or 22%
- b) Fairly weak linear relationship, r close to -.5, r^2 only 22%.

c)

Weight (x)	Actual MPG (y)	Predicted MPG (y)	Residual	
3.0	43	33.255	9.745	
4.0	30	27.511	2.489	
5.0	15	21.766	-6.766	

- d) Residual Plot use calculator
- e) Residual plot shows a curved pattern, so a line is NOT a good model for this data.

8. Assessment of statements concerning correlation and regression

- regression e) positive response variable a) i) b) strength of f) TRUE j) TRUE TRUE c) +1 or -1 TRUE k) **g**) 1) below
- d) TRUE
- h) -1 and +1

9. Surveys and samples

- a) Students at the university
- b) Grade level, major, gender (there are many others)
- c) Using ID numbers, select a simple random sample of the students using some form of random number generation. It might also be useful to stratify by age or gender.
- d) Convenience sample
- e) Systematic sample
- f) Voluntary response sample

10. Experimental Design

- a) A treatment is imposed
- b) Matched pairs
- c) Control eliminate lurking variables by ensuring that the type of play is similar
- d) Randomization randomize which child wears which clothing
- e) Use many sets of twins to collect a large amount of data

2nd Die (11a)**11. Discrete Random Variables** 2 2 2 3 3 3 a) See table, top right 3 3 3 4 4 4 1 b) See table, bottom right 3 3 4 4 4 1 3 d) .333 c) .5 e) 4.5 1st 5 5 5 2 4 4 4 5 5 5 Die 2 4 4 4 **12. Geometric Probability** 5 3 5 5 6 6 6 3 5 5 5 6 6 6 a) The variable of interest is how long until the first

- b) $P(X = 4) = (.4)^{3}(.6) = geometpdf(.6, 4) = .0384$
- c) $P(X \le 4) = geometcdf(.6, 4) = .9744$
- d) P(X > 3) = 1 geometcdf(.6, 3) = .064

e) $\mu = \frac{1}{2} = \frac{1}{2} = 1.\overline{6}$	(11b) sum	3	4	5	6
p .6	Prob (sum)	.167	.333	.333	.167

13. Binomial Probability

success. (p = .6)

a) The variable of interest is how many successes in a fixed number of trials. (p = .2, n = 8)

b)
$$P(X = 4) = \frac{8!}{4!4!} (.2)^4 (.8)^4 = binompdf(8, .2, 4) = .0459$$

- c) $P(X \le 2) = binomcdf(8, .2, 2) = .7969$
- d) P(X > 4) = 1 binomcdf(8, .2, 4) = .0104
- e) $\mu = np = 8(.2) = 1.6$